A Brief History of Time

Stephen Hawking

Buy on Amazon

Physics is a dense topic, but Hawking keeps math out of it to make it accessible. It’s a great overview of everything that we have learned about physics and also helped me understand its philosophical implications. Feels like a book everyone should read.

Notes

The death blow to the Aristotelian/Ptolemaic theory came in 1609. In that year, Galileo started observing the night sky with a telescope, which had just been invented. When he looked at the planet Jupiter, Galileo found that it was accompanied by several small satellites or moons that orbited around it. This implied that everything did not have to orbit directly around the earth, as Aristotle and Ptolemy had thought.

In an infinite universe, every point can be regarded as the center, because every point has an infinite number of stars on each side of it. The correct approach, it was realized only much later, is to consider the finite situation, in which the stars all fall in on each other, and then to ask how things change if one adds more stars roughly uniformly distributed outside this region.

But in 1929, Edwin Hubble made the landmark observation that wherever you look, distant galaxies are moving rapidly away from us. In other words, the universe is expanding. This means that at earlier times objects would have been closer together. In fact, it seemed that there was a time, about ten or twenty thousand million years ago, when they were all at exactly the same place and when, therefore, the density of the universe was infinite. This discovery finally brought the question of the beginning of the universe into the realm of science.

The fundamental postulate of the theory of relativity, as it was called, was that the laws of science should be the same for all freely moving observers, no matter what their speed. This was true for Newton’s laws of motion, but now the idea was extended to include Maxwell’s theory and the speed of light: all observers should measure the same speed of light, no matter how fast they are moving.

As an object approaches the speed of light, its mass rises ever more quickly, so it takes more and more energy to speed it up further. It can in fact never reach the speed of light, because by then its mass would have become infinite, and by the equivalence of mass and energy, it would have taken an infinite amount of energy to get it there. For this reason, any normal object is forever confined by relativity to move at speeds slower than the speed of light. Only light, or other waves that have no intrinsic mass, can move at the speed of light.

For example, if the sun were to cease to shine at this very moment, it would not affect things on earth at the present time because they would be in the elsewhere of the event when the sun went out.

Light rays too must follow geodesics in space-time. Again, the fact that space is curved means that light no longer appears to travel in straight lines in space. So general relativity predicts that light should be bent by gravitational fields. For example, the theory predicts that the light cones of points near the sun would be slightly bent inward, on account of the mass of the sun. This means that light from a distant star that happened to pass near the sun would be deflected through a small angle, causing the star to appear in a different position to an observer on the earth.

We now know that our galaxy is only one of some hundred thousand million that can be seen using modern telescopes, each galaxy itself containing some hundred thousand million stars.

In the case of light, therefore, this means that stars moving away from us will have their spectra shifted toward the red end of the spectrum (red-shifted) and those moving toward us will have their spectra blue-shifted. This relationship between wavelength and speed, which is called the Doppler effect, is an everyday experience…It was quite a surprise, therefore, to find that most galaxies appeared red-shifted: nearly all were moving away from us! More surprising still was the finding that Hubble published in 1929: even the size of a galaxy’s red shift is not random, but is directly proportional to the galaxy’s distance from us. Or, in other words, the farther a galaxy is, the faster it is moving away!

Dicke and Peebles argued that we should still be able to see the glow of the early universe, because light from very distant parts of it would only just be reaching us now. However, the expansion of the universe meant that this light should be so greatly red-shifted that it would appear to us now as microwave radiation. Dicke and Peebles were preparing to look for this radiation when Penzias and Wilson heard about their work and realized that they had already found it.

The idea was that as the galaxies moved away from each other, new galaxies were continually forming in the gaps in between, from new matter that was being continually created. The universe would therefore look roughly the same at all times as well as at all points of space.

Using the way light cones behave in general relativity, together with the fact that gravity is always attractive, he showed that a star collapsing under its own gravity is trapped in a region whose surface eventually shrinks to zero size. And, since the surface of the region shrinks to zero, so too must its volume. All the matter in the star will be compressed into a region of zero volume, so the density of matter and the curvature of space-time become infinite. In other words, one has a singularity contained within a region of space-time known as a black hole.

In other words, the more accurately you try to measure the position of the particle, the less accurately you can measure its speed, and vice versa. Heisenberg showed that the uncertainty in the position of the particle times the uncertainty in its velocity times the mass of the particle can never be smaller than a certain quantity, which is known as Planck’s constant. Moreover, this limit does not depend on the way in which one tries to measure the position or velocity of the particle, or on the type of particle: Heisenberg’s uncertainty principle is a fundamental, inescapable property of the world.

The uncertainty principle signaled an end to Laplace’s dream of a theory of science, a model of the universe that would be completely deterministic: one certainly cannot predict future events exactly if one cannot even measure the present state of the universe precisely!

In general, quantum mechanics does not predict a single definite result for an observation. Instead, it predicts a number of different possible outcomes and tells us how likely each of these is.

There are a number of different varieties of quarks: there are six “flavors,” which we call up, down, strange, charmed, bottom, and top. The first three flavors had been known since the 1960s but the charmed quark was discovered only in 1974, the bottom in 1977, and the top in 1995. Each flavor comes in three “colors,” red, green, and blue.

A proton or neutron is made up of three quarks, one of each color. A proton contains two up quarks and one down quark; a neutron contains two down and one up. We can create particles made up of the other quarks (strange, charmed, bottom, and top), but these all have a much greater mass and decay very rapidly into protons and neutrons.

A particle of spin 0 is like a dot: it looks the same from every direction (Fig. 5.1-i). On the other hand, a particle of spin 1 is like an arrow: it looks different from different directions (Fig. 5.1-ii). Only if one turns it round a complete revolution (360 degrees) does the particle look the same. A particle of spin 2 is like a double-headed arrow (Fig. 5.1-iii): it looks the same if one turns it round half a revolution (180 degrees). Similarly, higher spin particles look the same if one turns them through smaller fractions of a complete revolution. All this seems fairly straightforward, but the remarkable fact is that there are particles that do not look the same if one turns them through just one revolution: you have to turn them through two complete revolutions! Such particles are said to have spin ½.

The discovery of the positron in 1932 confirmed Dirac’s theory and led to his being awarded the Nobel Prize for physics in 1933. We now know that every particle has an antiparticle, with which it can annihilate.

The first category is the gravitational force. This force is universal, that is, every particle feels the force of gravity, according to its mass or energy. Gravity is the weakest of the four forces by a long way; it is so weak that we would not notice it at all were it not for two special properties that it has: it can act over large distances, and it is always attractive…The gravitational force between the sun and the earth is ascribed to the exchange of gravitons between the particles that make up these two bodies. Although the exchanged particles are virtual, they certainly do produce a measurable effect—they make the earth orbit the sun!

The next category is the electromagnetic force, which interacts with electrically charged particles like electrons and quarks, but not with uncharged particles such as gravitons. It is much stronger than the gravitational force: the electromagnetic force between two electrons is about a million million million million million million million (1 with forty-two zeros after it) times bigger than the gravitational force.

The third category is called the weak nuclear force, which is responsible for radioactivity and which acts on all matter particles of spin ½, but not on particles of spin 0, 1, or 2, such as photons and gravitons.

The fourth category is the strong nuclear force, which holds the quarks together in the proton and neutron, and holds the protons and neutrons together in the nucleus of an atom.

On this assumption, a Cambridge don, John Michell, wrote a paper in 1783 in the Philosophical Transactions of the Royal Society of London in which he pointed out that a star that was sufficiently massive and compact would have such a strong gravitational field that light could not escape: any light emitted from the surface of the star would be dragged back by the star’s gravitational attraction before it could get very far. Michell suggested that there might be a large number of stars like this. Although we would not be able to see them because the light from them would not reach us, we would still feel their gravitational attraction. Such objects are what we now call black holes, because that is what they are: black voids in space.

A star is formed when a large amount of gas (mostly hydrogen) starts to collapse in on itself due to its gravitational attraction. As it contracts, the atoms of the gas collide with each other more and more frequently and at greater and greater speeds—the gas heats up. Eventually, the gas will be so hot that when the hydrogen atoms collide they no longer bounce off each other, but instead coalesce to form helium. The heat released in this reaction, which is like a controlled hydrogen bomb explosion, is what makes the star shine. This additional heat also increases the pressure of the gas until it is sufficient to balance the gravitational attraction, and the gas stops contracting. It is a bit like a balloon—there is a balance between the pressure of the air inside, which is trying to make the balloon expand, and the tension in the rubber, which is trying to make the balloon smaller. Stars will remain stable like this for a long time, with heat from the nuclear reactions balancing the gravitational attraction.

If a star’s mass is less than the Chandrasekhar limit, it can eventually stop contracting and settle down to a possible final state as a “white dwarf” with a radius of a few thousand miles and a density of hundreds of tons per cubic inch.

In other words, the singularities produced by gravitational collapse occur only in places, like black holes, where they are decently hidden from outside view by an event horizon. Strictly, this is what is known as the weak cosmic censorship hypothesis: it protects observers who remain outside the black hole from the consequences of the breakdown of predictability that occurs at the singularity, but it does nothing at all for the poor unfortunate astronaut who falls into the hole.

The event horizon, the boundary of the region of space-time from which it is not possible to escape, acts rather like a one-way membrane around the black hole: objects, such as unwary astronauts, can fall through the event horizon into the black hole, but nothing can ever get out of the black hole through the event horizon.

Anything or anyone who falls through the event horizon will soon reach the region of infinite density and the end of time.

The number of black holes may well be greater even than the number of visible stars, which totals about a hundred thousand million in our galaxy alone. The extra gravitational attraction of such a large number of black holes could explain why our galaxy rotates at the rate it does: the mass of the visible stars is insufficient to account for this. We also have some evidence that there is a much larger black hole, with a mass of about a hundred thousand times that of the sun, at the center of our galaxy.

If the rays of light that form the event horizon, the boundary of the black hole, can never approach each other, the area of the event horizon might stay the same or increase with time, but it could never decrease because that would mean that at least some of the rays of light in the boundary would have to be approaching each other. In fact, the area would increase whenever matter or radiation fell into the black hole

It is a matter of common experience that disorder will tend to increase if things are left to themselves. (One has only to stop making repairs around the house to see that!)

As matter carrying entropy fell into a black hole, the area of its event horizon would go up, so that the sum of the entropy of matter outside black holes and the area of the horizons would never go down.

How is it possible that a black hole appears to emit particles when we know that nothing can escape from within its event horizon? The answer, quantum theory tells us, is that the particles do not come from within the black hole, but from the “empty” space just outside the black hole’s event horizon!

If an astronaut falls into a black hole, its mass will increase, but eventually the energy equivalent of that extra mass will be returned to the universe in the form of radiation. Thus, in a sense, the astronaut will be “recycled.” It would be a poor sort of immortality, however, because any personal concept of time for the astronaut would almost certainly come to an end as he was torn apart inside the black hole!

Why did the universe start out with so nearly the critical rate of expansion that separates models that recollapse from those that go on expanding forever, that even now, ten thousand million years later, it is still expanding at nearly the critical rate? If the rate of expansion one second after the big bang had been smaller by even one part in a hundred thousand million million, the universe would have recollapsed before it ever reached its present size.

Similarly, in the case of the universe, could it be that we are living in a region that just happens by chance to be smooth and uniform? At first sight this might seem very improbable, because such smooth regions would be heavily outnumbered by chaotic and irregular regions. However, suppose that only in the smooth regions were galaxies and stars formed and were conditions right for the development of complicated self-replicating organisms like ourselves who were capable of asking the question: why is the universe so smooth? This is an example of the application of what is known as the anthropic principle, which can be paraphrased as “We see the universe the way it is because we exist.”

On the other hand, the quantum theory of gravity has opened up a new possibility, in which there would be no boundary to space-time and so there would be no need to specify the behavior at the boundary. There would be no singularities at which the laws of science broke down, and no edge of space-time at which one would have to appeal to God or some new law to set the boundary conditions for space-time. One could say: “The boundary condition of the universe is that it has no boundary.” The universe would be completely self-contained and not affected by anything outside itself. It would neither be created nor destroyed. It would just BE.

This might suggest that the so-called imaginary time is really the real time, and that what we call real time is just a figment of our imaginations. In real time, the universe has a beginning and an end at singularities that form a boundary to space-time and at which the laws of science break down. But in imaginary time, there are no singularities or boundaries. So maybe what we call imaginary time is really more basic, and what we call real is just an idea that we invent to help us describe what we think the universe is like.

With the success of scientific theories in describing events, most people have come to believe that God allows the universe to evolve according to a set of laws and does not intervene in the universe to break these laws. However, the laws do not tell us what the universe should have looked like when it started—it would still be up to God to wind up the clockwork and choose how to start it off. So long as the universe had a beginning, we could suppose it had a creator. But if the universe is really completely self-contained, having no boundary or edge, it would have neither beginning nor end: it would simply be. What place, then, for a creator?

When one tried to unify gravity with quantum mechanics, one had to introduce the idea of “imaginary” time. Imaginary time is indistinguishable from directions in space. If one can go north, one can turn around and head south; equally, if one can go forward in imaginary time, one ought to be able to turn round and go backward. This means that there can be no important difference between the forward and backward directions of imaginary time.

There are at least three different arrows of time. First, there is the thermodynamic arrow of time, the direction of time in which disorder or entropy increases. Then, there is the psychological arrow of time. This is the direction in which we feel time passes, the direction in which we remember the past but not the future. Finally, there is the cosmological arrow of time. This is the direction of time in which the universe is expanding rather than contracting.

I have shown that the psychological arrow is essentially the same as the thermodynamic arrow, so that the two would always point in the same direction. The no boundary proposal for the universe predicts the existence of a well-defined thermodynamic arrow of time because the universe must start off in a smooth and ordered state. And the reason we observe this thermodynamic arrow to agree with the cosmological arrow is that intelligent beings can exist only in the expanding phase. The contracting phase will be unsuitable because it has no strong thermodynamic arrow of time.

However, it has been suggested that it might be possible for an advanced civilization to keep a wormhole open. To do this, or to warp space-time in any other way so as to permit time travel, one can show that one needs a region of space-time with negative curvature, like the surface of a saddle. Ordinary matter, which has a positive energy density, gives space-time a positive curvature, like the surface of a sphere. So what one needs, in order to warp space-time in a way that will allow travel into the past, is matter with negative energy density.

The explanation of how black holes can emit particles and radiation (given in Chapter 7) was that one member of a virtual particle/antiparticle pair (say, the antiparticle) might fall into the black hole, leaving the other member without a partner with which to annihilate. The forsaken particle might fall into the hole as well, but it might also escape from the vicinity of the black hole. If so, to an observer at a distance it would appear to be a particle emitted by the black hole.

However, in 1984 there was a remarkable change of opinion in favor of what are called string theories. In these theories the basic objects are not particles, which occupy a single point of space, but things that have a length but no other dimension, like an infinitely thin piece of string.

The suggestion is that the other dimensions are curved up into a space of very small size, something like a million million million million millionth of an inch. This is so small that we just don’t notice it: we see only one time dimension and three space dimensions, in which space-time is fairly flat. It is like the surface of a straw. If you look at it closely, you see it is two-dimensional (the position of a point on the straw is described by two numbers, the length along the straw and the distance round the circular direction). But if you look at it from a distance, you don’t see the thickness of the straw and it looks one-dimensional (the position of a point is specified only by the length along the straw). So it is with space-time: on a very small scale it is ten-dimensional and highly curved, but on bigger scales you don’t see the curvature or the extra dimensions.

However, if we do discover a complete theory, it should in time be understandable in broad principle by everyone, not just a few scientists. Then we shall all, philosophers, scientists, and just ordinary people, be able to take part in the discussion of the question of why it is that we and the universe exist. If we find the answer to that, it would be the ultimate triumph of human reason—for then we would know the mind of God.

Enjoy reading this?

Join my newsletter! Each week I breakdown interesting finance and investing topics. I put in hours of research so that you can spend minutes learning. Unsubscribe at any time.

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.